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A method of analyzing gas mixtures known under the name of gas chromatography has grown 
rapidly over the past 10-15 years (cf.[l]). In the method a fraction of the gas mixture which 
is to be analyzed is subjected to ionization and forced to pass across a potential difference 
in a neutral gas filler from a negative or grid electrode A to a collector B (Fig. i). Since 
the mobility of different ions of a mixture may differ, the ions take different times to 
travel through the path L. As a result the mixture becomes separated in terms of ion type, 
and in a graph, for example, of the dependence of the current intensity through a device on 
transit time there will be characteristic peaks by means of which the presence of ions of a 
particular substance may be detected. The method is distinguished by a high level of 
sensitivity and, therefore, has found numerous applications, even in criminology. 

The design of devices used in gas chromatography and the analysis of measurement results 
requires a numerical solution of the corresponding non-steady-state problem, which incor- 
porates diffusion and other processes which occur in a mixture containing different types 
of ions and neutral conductors in an electric field. However, all the characteristic times 
for these processes are much less than the time it takes for the chromatographic peaks to 
become blurred. A solution of the non-steady-state problem can thus be constructed on 
the basis of the solutions of the steady-state problem [2]. 

Schematically, the statement of the steady-state problem we wish to solve is as follows 
[3]. A flow of thermally excited electrons is directed across a grid electrode A toward a 
collector B. The space between A and B is filled with an inert gas or nitrogen at atmospheric 
pressure p and contains a slight admixture of the substance which is under investigation, 
i.e., an electrophorus whose molecules are ionized through the adhesion of electrons to its 
surface. The device is usually constructed in such a way as to maintain a constant current J 
of the negative particles from the grid electrode to the collector. On the basis of some 
known concentration Ne(O) of electrons on the grid electrode, it is necessary to find the 
distribution N e (x) in the interval 0 < x < L, which, in turn, makes it easy to find the 
distribution of the ion concentration Ni(x), the field E(x), the potential drop U = ! Eds, 

and so on. Proceeding in this way it is possible to compute, for example, the current- 
voltage characteristics of the device or, by solving an inverse problem, to determine from 
experiments values of the parameters which are required in order to interpret the chromato- 
graphic measurements. 

The condition according to which the currant must be constant may be written in the 
following form: 

dN e dNi 
J = - -  D~ --dU - -  Di ~ + v~N~ + v~AQ (1) 

(N e, v e, D e , and N i, vi, D i are the concentration, diffusion rate, and diffusion coef- 
ficient of the electrons and ions, respectively). 

Since the electric field E is extremely weak, whereas the device operates at atmospheric 
pressure, the ratio E/p is small and the following relations hold: 

v~ =--~eE, m~ =--B~E 

(Pc and Pi are the mobility of the electrons and ions, respectively). 
conditions, the quantities N e and N i are connected by the relation 

(2) 
Over a broad range of 
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N,(z) = N~,o [i  - -  exp (--aN~ (x))  ]. 

Here Ni, 0 is the initial concentration of the electrophorus; a = 0.5k~; k is the capture 

rate constant; and T is the ion lifetime. 

To this we must add Gauss' equation 

(3) 

d E  e ;~= ~ ( X , + X ~ ) ,  (4) 

where e is electron charge and g0 is the permittivity of the gas filler. 

This system of equations must be solved assuming the boundary condition 

N.(o)= N,,o (5) 
(Ne, 0 is the known density of electrons on the grid electrode). 

Let us present typical values of the parameters occurring in the system (1)-(4), taken 

from [3]: Ne, 0 = 10 s cm-~; Ni, 0 = l0 s cm-3; J in the range I01~ electrons/(cm2"sec); 

D e = I0 cm2/sec; D i = 0.015 cm2/sec, �9 ~e = 13,500 cm2/sec; ~i = 0.6 cm2/sec; k = 2"10 -7 

cm3/sec; �9 = 50 msec; and L in the range 0.1-0.3 cm. 

For the subsequent analysis it is important that the mobility and diffusion coefficient 
of the electrons be 103 greater than the corresponding ion quantities: D e >> Di, Pe >> ~i" 

Since the system (1)-(4) reduces to a single second-order differential equation for 
Ne(x), one more condition, which is not known precisely, is required. The following method 
was proposed in [3] to get around this difficulty. 

If we start from the point x = 0, then, in order to solve the system we have to specify 
a value N~(0). It turns out that if this value is not a happy choice, the solution Ne(x) 
will either diverge or become negative with increasing x, whence the following prescription: 
Find an appropriate value Ne'(0) by trial and error in order to succeed in "extending" the 
solution sufficiently far. This approach proves to be extremely time-consuming, as the 
authors of [3] themselves noted. Moreover, numerical instability imposes stringent con- 
straints on the computational algorithm. 

In the present article we propose a method of direct (i.e., without trial and error) 
solution of the problem we have stated. 

Note that the approach of [3] is equivalent to specifying the missing second boundary 
condition in the form 

N,(~)--~O for 2-~oo. 
(5') 

Therefore, in the asymptotic domain x > xQ the condition aN e << 1 must hold. Because of this 
circumstance it is possible to simplify the system (I)-(4) to such an extent that it becomes 
possible to obtain analytically an approximate solution of the system. The exact system of 
equations is then integrated numerically, starting from a distant point x 0 in the direction 
of decreasing x. Ne(x) meanwhile is increasing, since the solution must continue until the 
value Ne(x) = Ne, 0 is reached. This point must also be taken as the coordinate of the grid 
electrode x = 0. If it turns out that the distance from the coordinate origin of the start- 
ing point x 0 > L, this will mean that the desired solution has been found, moreover, on the 
interval 0 < x < L. Otherwise, the approximate analytic solution must be used on the interval 
x 0 < x < L. Such is the outline of the approach we are proposing, which we also set forth 
in detail below. 
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Differentiating (i) with respect to x and eliminating the variables E, E', and N i from 
the resulting equation by means of (1)-(4), we have for Ne(x) 

x,x~ =/(x~, :%). (6) 
The e x p l i c i t  fo rm o f  t h e  f u n c t i o n  f i s  n o t  p r e s e n t e d ,  s i n c e  i t  i s  cumbersome and i t s  

d e r i v a t i o n  i s  t r a n s p a r e n t .  Note  t h a t  t h e  f a c t o r  o f  t h e  l e a d i n g  d e r i v a t i v e  N" t e n d s  t o  z e r o  
w i t h  i n c r e a s i n g  x ,  whence t h e  c o m p u t a t i o n a l  d i f f i c u l t i e s  i n  t h e  i m p l e m e n t a t i o n  o f  t h e ' a p p r o a c h  
of [3]. 

In the asymptotic domain (x > x 0) we obtain using an approximation of (6) which is linear 
with respect to eN e the following: 

N,N: = (~2D~N~# ~ JN; + DN;~+aN~)/D ----- A (Ne, N:). (7 )  

Here 

a =  % ~ ( i + ~ N L o  ), D = D ~ V I , o D I ,  ~=Vte+~Ni ,o~ i .  (8 )  

The first term in fl, i.e., on the right-hand side of Eq. (7), may be omitted in view of con- 
dition (5') and the relation D e >> D i. 

In (7) let us pass to dimensionless variables, making the substitution of variables 
i/2 $ = x/f, where the characteristic length s = (a/D) . Note that for the typical values of 

the parameters presented above, this length is on the order of 10 -3 cm, whence L >> s which 
also suggests an "asymptotic" approach to the solution. 

After the passage to dimensionless variables, we arrive at the following equation: 

yr.__y,_ ~y,2_ V3 = 0, 

where y(g) = Ne(x) ; ~ = Js 

Equation (9) may be integrated once. yielding 

(9) 

v'  = - ~  • [2u2(v + ~ (~ - to) ) ]  ,,'2 (10 )  
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(~0 is the constant of integration, which has the sense of some conditional reference point 
occurring in the asymptotic solution of Eq. (7)). Let us set z = $ - $0- From (5') it 
follows that in (i0) a positive value must be chosen for the root. Then, in a first approxi- 
mation in negative powers of z, we find from (I0) that 

y(z) ~ y, (z) = (~ /2z )  'j2. 

The second approximation y2(z) may be obtained if it is sought in the form Y2 = Yl + Az-b 
(A and b are constants). This yields 

y2 (z)  = (~/2z)  -ii2 _ 0,5/z2. 

Hence follows a method of determining the initial values 

(11) 

for the numerical solution of Eq. (7). 

1. Let us specify N s in such a way that the condition ~N s << 1 is fulfilled. In the 
numerical experiments it turns out that it suffices to set ~N s = 0.1. Let us now set Y2 = Ns 
in (Ii). 

2. Using the value of Y2 we find from (ii) the auxiliary variable z. In order to obtain 
a good approximation of (ii) the first term in (ii) must be must greater than the second 
term, exceeding it by, for example, a factor of 10. If this is not the case, the value of 
N s which has been specified must be reduced. Thus, the domain within which the approximate 
asymptotic solution of Eq. (7) is valid is found automatically. 

3. The derivative N s' may then be obtained either from (i0) or by differentiation of 
(11) with respect to x. 

Once the initial values of N s and N s' are known, we numerically integrate Eq. (6) in the 
direction of decreasing x until N e = Ne, 0. It must be kept in mind that near the grid elec- 
trode the density Ne(x) varies extremely sharply. Therefore, in certain cases it is best 
to use an effective spline collocation technique with specially selected nodes in order to 
improve the accuracy of the numerical integration. 

Of particular importance in the selection of the initial point x0 (more precisely, in 
the selection of N s) is the extent to which the asymptotic equation (7) is itself valid at 
that point, i.e., the extent to which the right-hand sides of Eqs. (6) and (7) coincide when 
N s and N s' are replaced. Numerical experiments and simple estimates show that the relative 
discrepancy 

= I f -  fll// 

at the initial point may be significant in the case of high J, reaching several dozen percent, 
which, of course, will have a slight influence on the solution, inasmuch as in the asymptotic 
domain the right-hand sides of both equations are both small. But for the sake of achieving 
reliable results it is necessary to eliminate this shortcoming. For this purpose in (6) it 
is necessary to perform an expansion in powers of aN s up through quadratic terms inclu- 
sively, thereby a refined analog of Eq. (7) or its dimensionless variant (9), and obtain an 
approximate solution Y=a which improves (ii). After rather unwieldy computations, we obtain 

Y2. = Y2(z)+ 7/z, 7 = 0,25~2N~.@/( l + ~N~,o). ( l l a )  

The use of (lla) yields a value 6 < 0.005 when ~N s = 0.i in the worst of the tested variants. 

Naturally, questions arise as to how far should the initial point x 0 be and how reliable 
are the results obtained. At an initial level eN s = 0.1 in different trial computations, 

the point x 0 turns out to occur at a distance from 0.02 to 0.25 cm from the grid electrode, 
which is either less than the distance to the collector L or exceeds it by more than just a 
few centimeters. The accuracy of the solution was checked, first by varying the initial 
level N s and the step of the numerical integration. Second, we may solve, not Eq. (6), in 
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which conservation of current J is explicitly stated, inasmuch as Eq. (i) is used to eliminate 
the field strength from the equations, but rather the system of equations (i) and (4) directly. 
It then becomes possible to control the conservation of current J when substituting into 
(i) the numerical solutions for Ne(x) and E(x) and the derivatives of these variables. Trial 
computations show that, given reasonable values of the computational parameters, the method 
yields an accuracy to four or five places. 

Note that the parameters D and ~ occurring in (8) depend very slightly on the character- 
istics of the ion component. Consequently, the solution y(g) will depend very slightly on 
them far from the grid electrode and, since L >> s it might be expected that an admixture 
of ions would have to be detected mainly in terms of the variation in the characteristic 
length s Calculations that have been performed which involved varying the initial concentra- 
tion of ions while keeping the other parameters invariant confirm the above scale invariance. 

As an illustration, Figs. 2 and 3 present results obtained for a relative density of 
electrons n = Ne(x)/Ne, 0 and of the field E in the case J = 1011 electrons/(cm2.sec) and Ne, 0 = 
i0 s cm -s Curves 1 and 2 correspond to Ni,0 = 10 s and 109 cm -3, respectively. The initial 

points for ~N s = 0.05 are at distances of 0.41 and 0.31 cm, respectively. In both cases the 
standard Runge-Kutta method of numerical integration ensures conservation of current up to 
0.02%. The characteristic lengths s = 1.65"10-3 cm and s = 0-83"10-3 cm. 

Figure 4 illustrates the case of scale invariance, i.e., as Ni, 0 is varied, the ratio 

u = (n~/n2): (tl/Z2) 

differs significantly from 1 at x = O, though with increasing x it rapidly approaches i. 

lo 
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